Panasonic ideas for life

DIN48 SIZE
MULTI-RANGE ANALOG TIMER

PM4H-A
 PM4H-S
 PM4H-M

UL File No.: E122222 CSA File No.: LR39291

FEATURES

- Front panel of IP65 type is protected against water-splash and dust
- 100-240V AC free-voltage input, 48-125V DC type available
- Built-in Screw terminals
- Screw terminal type is used for easy wiring and reducing additional cost for accessories.
- 8 different operation modes: (PM4H-A)
- Tube base with pin style terminals
- Multiple time ranges - 1 s to 500 h (Max.)
- Short body - 62.5mm 2.461 inch (screw terminal type)

PRODUCT TYPE

If you use this timer under harsh environment, please order above sealed type (IP65 type). IP65 type - Protection dust and water jet splay on the front face.
When ordering CE type, please order the Part No. with suffix CE. (e.g. PM4HA-H-AC240VWCE)

TIME RANGE

Scale	Time unit	sec	min	hrs	10h
1	Control time range	0.1 s to 1 s	0.1 min to 1 min	0.1 h to 1h	1.0h to 10h
5		0.5 s to 5 s	0.5 min to 5 min	0.5 h to 5h	5 h to 50h
10		1.0s to 10s	1.0 min to 10 min	1.0h to 10h	10h to 100h
50		5 s to 50s	5 min to 50 min	5 h to 50h	50h to 500h

PM4H-A/PM4H-S/PM4H-M
All types of PM4H timer have multi-time range.
16 time ranges are selectable.
1s to 500 h (Max. range) is controlled.

[^0]CHARACTERISTICS

Item Type			PM4H-A	PM4H-S	PM4H-M
Rating	Rated operating voltage		100 to 240 V AC, 12 V DC, 24 V AC/DC, 48 to 125 V DC		
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common (AC operating type)		
	Rated power consumption		Approx. 10VA (100 to 240 V AC$)$Approx. $2.5 \mathrm{VA}(24 \mathrm{VC})$Approx. 2 W (12V DC, 24 V DC, 48 to 125 V DC)		
	Output rating		5A 250V AC (resistive load)		
	Operating mode		Pulse ON-delay Pulse Flicker Pulse ON-Flicker Differential ON/OFF-delay (1) (2) Signal OFF-delay Pulse One-shot Pulse One-cycle	Power ON-delay	Power ON-delay Power Flicker Power ON-flicker Power One-shot Power One-cycle (with instantaneous contact)
	Time range		1s to 500h (Max.) 16 time ranges switchable		
Time accuracy Note:)	Operating time fluctuation		$\pm 0.3 \%$ (power off time change at the range of 0.1 s to 1 h)		
	Setting error		$\pm 5 \%$ (Full-scale value)		
	Voltage error		$\pm 0.5 \%$ (at the operating voltage changes between 85 to 110%)		
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$)		
Contact	Contact arrangement		Timed-out 2 Form C		Timed-out 1 Form C Instantaneous 1 Form C
	Contact resistance (Initial value)		Max. $100 \mathrm{~m} \Omega$ (at 1A 6V DC)		
	Contact material		Silver alloy		Au flash on Silver alloy
Life	Mechanical (contact)		2×10^{7}		
	Electrical (contact)		10^{5} (at rated control capacity)		
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage (at $20^{\circ} \mathrm{C}$ coil temp.)		
	Insulation resistance (Initial value)		Between live and dead metal parts $00 \mathrm{M} \Omega$ Between input and output Between contacts of different poles Between contacts of same pole (At $500 \mathrm{~V} D C$) 		
	Breakdown voltage (Initial value)		$2,000 \mathrm{Vrms}$ for 1 min Between live and dead metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole		
	Min. power off time		100 ms		
	Max. temperature rise		$55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$		$65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$
Mechanical function	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)		
		Destructive		$980 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on	
	Vibration resistance	Functional	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ double amplitude of 0.5 mm (10 min on 3 axes)		
		Destructive	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ double amplitude of 0.75 mm (1 h on 3 axes)		
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$		
	Ambient humidity		Max. 85\%RH		
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$		
	Ripple factor (DC type)		20\%		
Others	Protective construction		IP65 on front panel (using rubber gasket ATC18002) <only for IP65 type>		
	Weight		100 g 3.527 oz (Pin type)		
			110 g 3.880 oz (Screw terminal type)		

Note: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$

WIRING DIAGRAMS

PM4H-A

Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out contact 2 Form C

Pin type

- Timed-out 1 Form C
- Instantaneous 1 Form C

Screw terminal type

- Timed-out 1 Form C
- Instantaneous 1 Form C

PM4H-S
Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out 2 Form C

1) DC Type

Type	Pin	Screw terminal
PM4H-A	Connect the terminal (2) to negative (-), and the terminal (10) to positive (+).	Connect the terminal x to negative $(-)$, and the terminal z to positive ($(+)$.
PM4H-S PM4H-M	Connect the terminal (2) to negative $(-)$, and the terminal (7) to positive (+).	

2) Contact

PARTS NAME

PM4H-S

PM4H-A

PM4H-M

Operation mode selector
Selectable from 5 operation modes
ON : Power ON-delay
FL : Power flicker
FO : Power ON-flicker
OS : Power One-shot
OC : Power One-cycle

DIMENSIONS

- PM4H- \square

Screw terminal type
(Flush mount)

- Panel mount dimensions (with mounting frame)

Pin type
(Flush mount/Surface mount)

Screw terminal type

- Surface mount dimensions

Socket mount (Pin type)

- Panel cut out dimensions

Standard cut out dimensions are shown below.
Use mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- Adjacent mounting

Note: 1. The proper thickness of mounting panel is between 1 to 5 mm .
. Adjacent mount is less water-resistant.

OPERATION MODE

PM4H－A

The new settings are valid after power $\mathrm{OFF} \rightarrow \mathrm{ON}$

＊LED lighting 冰 LED flickering
T：Setting time $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{ta}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}<\mathrm{T} \mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{T}$ ）

Operation moder
Pulse
ON－delay

（ON）
c

Pulse
Flicker

Signal OFF－delay
（SF）
te：When a stop signal is applied during timing operation，the time cycle stops．When a stop signal is removed，the time cycle begins．）
Turn the operation selector to © 0 ．
Power is applied continuously．When a start signal is applied，the time cycle begins．The output contacts change state after the time delay is completed．The contacts will return to their normal state when a reset signal is applied or power is removed．

Turn the operation selector to（FL）．
Power is applied continuously．When a start signal is applied，the time cycle begins but the output contacts remain in their normal state． When the time delay is completed，the output contacts change state and next time cycle begins．When this time delay is completed，the output contacts return to their normal state．This cycle will repeat until a reset signal is applied or power is removed．
（Note：When a stop signal is applied during timing operation，the time cycle stops．When a stop signal is removed，the time cycle begins．）

Turn the operation selector to $\left.{ }^{\circ}\right)$ ．
Power is applied continuously．When a start signal is applied，the out－ put contacts change state immediately and time cycle begins．When the time delay is completed，the output contacts change state and next time cycle begins．When the time delay is completed，the output contacts return to the normal state．
This cycle will repeat until a reset signal is applied or power is removed．
（Note：When a stop signal is applied during timing operation，the time cycle stops．When a stop signal is removed，the time cycle begins．）

Turn the operation selector to（夭f1）．
Power is applied continuously．When a start signal is applied，the out－ put contacts change state immediately and time cycle begins．The output contacts change state after the timing cycle is completed． When the start signal is removed，the output contacts change state and time cycle starts again．If operation signal is turned ON or OFF during timing operation，time cycle restart at that point．
The output contacts will return to their normal state when a reset sig－ nal is applied or power is removed．
（Note：When a stop signals is applied during timing operation，the time cycle stops．When a stop signal is removed，the time cycle begins．）

Turn the operation selector to（\＄5）．
Power is applied continuously．When a start signal is applied，the out－ put contacts change state immediately．When the start signal is removed the time cycle begins．The output contacts will return to their normal state when the time delay is completed．
Reset will occur when a reset signal is applied or power is removed． （Note：When a stop signal is applied during timing operation，the time cycle stops．When a stop signal is removed，the time cycle begins．）

Δ Note：米 LED lighting or No LED lighting

${ }^{\Delta}$ Note：来 LED lighting or No LED lighting

Δ Note：来 LED lighting or No LED lighting

Operation mode

[^1]16

UL File No.: E122222

CSA File No.: LR39291

FEATURES

- Select four types of time ranges between 0.2 s and 100 s on a single unit.
- Select between five types of time ranges between 0.04 s and 0.7 s for the $\lambda-\triangle$ switching times.
- There is a $\lambda-\triangle$ switching indicator so you can check the operation at a glance.
- The AC free power supply and shorter body make it easier to use.

CHARACTERISTICS

Item Type			PM4H-SD/SDM
Rating	Rated operating voltage		100 to 240 V AC, 24 V AC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common
	Rated power consumption		Approx. 10VA (100 to 240 V AC) Approx. 2.5VA (24V AC)
	Output rating		5A 250V AC (resistive load)
	Operation mode		$\lambda-\triangle$ star-delta switching (Power ON-delay)
	人 operation control time range		2 s to 100s, 4 time ranges switchable
	$\lambda-\triangle$ switching time		$0.04,0.1,0.3,0.5,0.7 \mathrm{~s}$ (5 time range selectable)
Time accuracy Note:)	Operation time fluctuation		$\pm 0.3 \%$ (power off time change at the range of 0.5 s to 1 h)
	Setting error		$\pm 5 \%$ (Full-scale value)
	Voltage error		$\pm 0.5 \%$ (at the operating voltage changes between 85 to 110%)
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$)
Contact	Contact arrangement		Star (人) side: Timed-out 1 Form A Delta (\triangle) side: Timed-out 1 Form A Instantaneous: 1 Form A (Instantaneous for SDM type only)
	Contact resistance (Initial value)		Max. 100m Ω (at 1A 6V DC)
	Contact material		Au flash on Silver alloy
Life	Mechanical (contact)		2×10^{7}
	Electrical (contact)		10^{5} (at rated control capacity)
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage (at $20^{\circ} \mathrm{C}$ coil temp.)
	Insulation resistance (Initial value)		Between live and dead metal parts Between input and output Min. $100 \mathrm{M} \Omega$ Between contacts of different poles *3 Between contacts of same pole (At 500 V DC)
	Breakdown voltage (Initial value)		$2,000 \mathrm{Vrms}$ for 1 min Between live and dead metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles *3 $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole
	Min. power off time		500 ms
	Max. temperature rise		$65^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$
Mechanical function	Shock resistance	Functional	Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on 3 axes)
	Vibration resistance	Functional	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ double amplitude of 0.5 mm (10min on 3 axes)
		Destructive	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ double amplitude of 0.75 mm (1 h on 3 axes)
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$
	Ambient humidity		Max. 85\%RH
	Atmospheric pressure		860 to 1,060hPa
Others	Protective construction		IP65 on front panel (using rubber gasket ATC18002) <only for IP65 type>
	Weight		100 g 3.527 oz (Pin type)
			110 g 3.880 oz (Screw terminal type)

Notes: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage, $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
2) For the 2 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$
3) Between contacts of different poles for SDM type only.

PRODUCT TYPE

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	Terminal type	Part number
PM4H－SD Star（人）－Delta (\triangle) switching	Star（ 人）－ Delta（ \triangle ） switching	Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A	4 selectable ranges over 2s to 100s （ $\lambda-\triangle$ switching time： $0.04,0.1,0.3,0.5,0.7 \mathrm{~s})$	IP65	100 to 240V AC	8 pin	PM4HSD－S－AC240VW
						screw	PM4HSD－S－AC240VSW
					24V AC	8 pin	PM4HSD－S－AC24VW
						screw	PM4HSD－S－AC24VSW
PM4H－SDM Star（人）－Delta (\triangle) switching （Instantaneous contact）		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A Instantaneous： 1 Form A			10	8 pin	PM4HSDM－S－AC240VW
					100	screw	PM4HSDM－S－AC240VSW
					24V AC	8 pin	PM4HSDM－S－AC24VW
					，AC	screw	PM4HSDM－S－AC24VSW
PM4H－SD Star（人）－Delta (\triangle) switching		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A		IP50	100 to 240 V AC	8 pin	PM4HSD－S－AC240V
					100 to 240 V AC	screw	PM4HSD－S－AC240VS
					24 V AC	8 pin	PM4HSD－S－AC24V
						screw	PM4HSD－S－AC24VS
PM4H－SDM Star（人）－Delta (\triangle) switching （Instantaneous contact）		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A Instantaneous： 1 Form A			C	8 pin	PM4HSDM－S－AC240V
					100 to 240 V AC	screw	PM4HSDM－S－AC240VS
						8 pin	PM4HSDM－S－AC24V
					24 VAC	screw	PM4HSDM－S－AC24VS

When ordering CE type，please order the Part No．with suffix CE．（e．g．PM4HSD－S－AC240VWCE）

WIRING DIAGRAMS

Pin type
No instantaneous contact With instantaneous contact

Screw terminal type
No instantaneous contac

（5）－（8）：人 side time－delay contact （6）－（8）：\triangle side time－delay contact （1）－（3）：Instantaneous contact （SDM type）
6－7： ： － side time－delay contact \triangle side time－delay contact Instantaneous contact （SDM type）

DIMENSIONS
mm inch

OPERATION MODE

t1：人 operation time （人 indicator LED lights）
t2：人 $-\triangle$ switching time
t3：\triangle operation time
（ \triangle indicator LED lights）

TIME RANGE

Time range unit	Operating（s）	入－\triangle switching time（s）
Time range	0.2 s to 2 s	0.04
2	1 s to 10 s	0.1
10	2 s to 20 s	0.3
20	10 s to 100 s	0.5
100		0.7

DIN48 SIZE ANALOG

MULTIRANGE POWER

PM4H-F

 OFF-DELAY TIMERS
UL File No.: E122222

CSA File No.: LR39291

FEATURES

- Switch operation times between three types of time ranges of 1 s to 10 s and 1 \min to 10 min .
- Instantaneous reset available.
- The shorter body makes it easier to use.

CHARACTERISTICS

Item Type			PM4H-F8	PM4H-F8R	PM4H-F11R
Rating	Rated operating voltage		100 to 120 V AC, 200 to 240 V AC, 24 V AC, 24 V DC, 12 V DC		
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common (AC operating type)		
	Rated power consumption		Approx. 5VA (AC type) Approx. 2W (DC type)		
	Output rating		3A 250V AC (resistive load)		
	Operation mode		Power OFF-delay	Power OFF-delay (with reset)	
	Time range		1s to 10s: 3 range switchable 1 min to 10 min : 3 range selectable		
Time accuracy *1	Operation time fluctuation		$\pm 0.3 \%$		
	Setting error		$\pm 5 \%$ (Full-scale value)		
	Voltage error		$\pm 0.5 \%$ (at the operating voltage changes between 85 to 110\%)		
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$)		
Contact	Contact arrangement		Timed-out 2 Form C	Timed-out 1 Form C	Timed-out 2 Form C
	Contact resistance (Initial value)		Max. $100 \mathrm{~m} \Omega$ (at 1A 6V DC)		
	Contact material		Au flash on Silver alloy		
Life	Mechanical (contact)		10^{7}		
	Electrical (contact)		10^{5} (at rated control capacity)		
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage (at $20^{\circ} \mathrm{C}$ coil temp.), 90 to 110\% (DC Type)		
	Insulation resistance (Initial value)		Between live and dead metal parts Between input and output Between contacts of different poles *3 Between contacts of same pole (At 500V DC)		
	Breakdown voltage (Initial value)		$1,500 \mathrm{Vrms}$ for 1 min Between live and dead metal parts $1,500 \mathrm{Vrms}$ for 1 min Between input and output $1,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles *3 750 Vrms for 1 min Between contacts of same pole		
	Min. power supply width		s range type: 100 ms \min range type: 2 s		
	Min. reset time		50 ms		
	Max. temperature rise		$55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$		
Mechanical function	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)		
		Destructive		$980 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on 3 axes)	
	Vibration resistance	Functional	10 to 55 Hz : $1 \mathrm{cycle} / \mathrm{min}$ double amplitude of 0.5 mm (10 min on 3 axes)		
		Destructive	10 to 55 Hz : 1 cycle/min double amplitude of 0.75 mm (1 hr on 3 axes)		
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$		
	Ambient humidity		Max. 85\%RH		
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$		
	Ripple factor (DC type)		20\%		
Others	Protective construction		IP65 on front panel (using rubber gasket ATC18002) <only for IP65 type>		
	Weight		100 g 3.527 oz (Pin type)		
			110 g 3.880 oz (Screw terminal type)		

[^2]PRODUCT TYPE

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	$\begin{gathered} \text { Terminal } \\ \text { type } \end{gathered}$	Part Number
PM4H-F8	Power OFF-delay (without reset)	Relay Timed-out 2 Form C	3 selectable ranges over 1s to 10 s	IP65	100 to 120V AC	8 pin	PM4HF8-S-AC120VW
					200 to 240V AC	8 pin	PM4HF8-S-AC240VW
					24 V AC	8 pin	PM4HF8-S-AC24VW
					12 V DC	8 pin	PM4HF8-S-DC12VW
					24V DC	8 pin	PM4HF8-S-DC24VW
			3 selectable ranges over 1 min to 10 min		100 to 120V AC	8 pin	PM4HF8-M-AC120VW
					200 to 240V AC	8 pin	PM4HF8-M-AC240VW
					24 V AC	8 pin	PM4HF8-M-AC24VW
					12 V DC	8 pin	PM4HF8-M-DC12VW
					24 V DC	8 pin	PM4HF8-M-DC24VW
			3 selectable time ranges over 1s to 10s	IP50	100 to 120V AC	8 pin	PM4HF8-S-AC120V
					200 to 240V AC	8 pin	PM4HF8-S-AC240V
					24 V AC	8 pin	PM4HF8-S-AC24V
					12 V DC	8 pin	PM4HF8-S-DC12V
					24 V DC	8 pin	PM4HF8-S-DC24V
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pin	PM4HF8-M-AC120V
					200 to 240 V AC	8 pin	PM4HF8-M-AC240V
					24 V AC	8 pin	PM4HF8-M-AC24V
					12 V DC	8 pin	PM4HF8-M-DC12V
					24V DC	8 pin	PM4HF8-M-DC24V
PM4H-F8R	Power OFF-delay (with instantaneous reset)	Relay Timed-out 1 Form C	3 selectable time ranges over 1s to 10s	IP65	100 to 120V AC	8 pin	PM4HF8R-S-AC120VW
					200 to 240V AC	8 pin	PM4HF8R-S-AC240VW
					24 V AC	8 pin	PM4HF8R-S-AC24VW
					12 V DC	8 pin	PM4HF8R-S-DC12VW
					24V DC	8 pin	PM4HF8R-S-DC24VW
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pin	PM4HF8R-M-AC120VW
					200 to 240V AC	8 pin	PM4HF8R-M-AC240VW
					24 V AC	8 pin	PM4HF8R-M-AC24VW
					12 V DC	8 pin	PM4HF8R-M-DC12VW
					24V DC	8 pin	PM4HF8R-M-DC24VW
			3 selectable time ranges over 1s to 10s	IP50	100 to 120V AC	8 pin	PM4HF8R-S-AC120V
					200 to 240V AC	8 pin	PM4HF8R-S-AC240V
					24 V AC	8 pin	PM4HF8R-S-AC24V
					12 V DC	8 pin	PM4HF8R-S-DC12V
					24V DC	8 pin	PM4HF8R-S-DC24V
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pin	PM4HF8R-M-AC120V
					200 to 240 V AC	8 pin	PM4HF8R-M-AC240V
					24 V AC	8 pin	PM4HF8R-M-AC24V
					12 V DC	8 pin	PM4HF8R-M-DC12V
					24 V DC	8 pin	PM4HF8R-M-DC24V

When ordering CE type, please order the Part No. with suffix CE. (e.g. PM4HF8-S-AC120VWCE)

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	$\begin{gathered} \text { Terminal } \\ \text { type } \end{gathered}$	Part Number
PM4H-F11R	Power OFF-delay (with instantaneous reset)	Relay Timed-out 2 Form C	3 selectable time ranges over 1s to 10s	IP65	100 to 120V AC	11 pin	PM4HF11R-S-AC120VW
						screw	PM4HF11R-S-AC120VSW
					200 to 240 V AC	11 pin	PM4HF11R-S-AC240VW
						screw	PM4HF11R-S-AC240VSW
					24 V AC	11 pin	PM4HF11R-S-AC24VW
						screw	PM4HF11R-S-AC24VSW
					12V DC	11 pin	PM4HF11R-S-DC12VW
						screw	PM4HF11R-S-DC12VSW
					24V DC	11 pin	PM4HF11R-S-DC24VW
						screw	PM4HF11R-S-DC24VSW
				IP50	100 to 120 V AC	11 pin	PM4HF11R-S-AC120V
						screw	PM4HF11R-S-AC120VS
					200 to 240V AC	11 pin	PM4HF11R-S-AC240V
						screw	PM4HF11R-S-AC240VS
					24 V AC	11 pin	PM4HF11R-S-AC24V
						screw	PM4HF11R-S-AC24VS
					12V DC	11 pin	PM4HF11R-S-DC12V
						screw	PM4HF11R-S-DC12VS
					24V DC	11 pin	PM4HF11R-S-DC24V
						screw	PM4HF11R-S-DC24VS
			3 selectable time ranges over 1 min to 10 min	IP65	100 to 120V AC	11 pin	PM4HF11R-M-AC120VW
						screw	PM4HF11R-M-AC120VSW
					200 to 240 V AC	11 pin	PM4HF11R-M-AC240VW
						screw	PM4HF11R-M-AC240VSW
					24 V AC	11 pin	PM4HF11R-M-AC24VW
						screw	PM4HF11R-M-AC24VSW
					12 V DC	11 pin	PM4HF11R-M-DC12VW
						screw	PM4HF11R-M-DC12VSW
					24V DC	11 pin	PM4HF11R-M-DC24VW
						screw	PM4HF11R-M-DC24VSW
				IP50	100 to 120V AC	11 pin	PM4HF11R-M-AC120V
						screw	PM4HF11R-M-AC120VS
					200 to 240 V AC	11 pin	PM4HF11R-M-AC240V
						screw	PM4HF11R-M-AC240VS
					24 V AC	11 pin	PM4HF11R-M-AC24V
						screw	PM4HF11R-M-AC24VS
					12 V DC	11 pin	PM4HF11R-M-DC12V
						screw	PM4HF11R-M-DC12VS
					24V DC	11 pin	PM4HF11R-M-DC24V
						screw	PM4HF11R-M-DC24VS

When ordering CE type, please order the Part No. with suffix CE. (e.g. PM4HF11R-S-AC120VWCE)

DIMENSIONS

- Screw terminal type (embedded mounting)

- Pin type (embedded mounting/surface mount)

OPERATION

- PM4H-F8 (no reset input)
- PM4H-F8R/F11R (with reset input)

N.C.

Note: $\mathrm{t}<\mathrm{T}$: Time setting
Tr: Minimum power supply application time
Ts: Min. 2s (Time to restart operation after reset input is set to OFF: both second type and minute type)

WIRING DIAGRAMS

- PM4H-F8 (no reset input)

Pin type
Time-delay 2C

- PM4H-F8R (with reset input)

Pin type
Time-delay 1C, with reset input

- PM4H-F11R (with reset input)

Pin type
Time-delay 2C, with reset input

Screw terminal type
Time-delay 2C, with reset input

PM4H-F (WITH RESET) INPUT CONDITIONS

1. Contact operating input (pin type example)

Use a contact with good contact reliability for the input. Contact bounce can lead to erroneous operation of the timer, so use a contact with short bounce time. Make the resistance between terminals for a short circuit less than 1 k -ohms. Make the resistance between terminals for an open circuit greater than 100k-ohms.
2. Non-contact input (pin type example)

TIME RANGE

Time rangeTime range unit	s range type	min range type
1	0.04 s to 1 s	0.04 min to 1 min
5	0.2 s to 5 s	0.2 min to 5 min
10	0.4 s to 10 s	0.4 min to 10 min

MODES \& TIME SETTING

1) Operation mode setting [PM4H-A]

8 operation modes are selectable with operation mode selector.
Turn the operation mode selector with screw driver.
Operation mode is shown up through the window above the mode selector. The
 Turn the mode selector to the mark until you can check by clicking sound.
Confirm the mode selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2) Time setting [common]

16 time ranges are selectable between 1 s to 500 h .
Turn the time range selector with the screw driver.
Clockwise turning increases the time range, and Counter-clockwise turning decrease the time range.
Confirm the range selector position if it is correct.

How to use "Stop ring" [PM4H series]

1) Fixed time setting

Set the desired time and put 2 stop rings together.
Insert the rings into stopper to fix the time.

2) Fixed time range setting

Example: Time range 20s to 30 s.
(1) Shorter time value setting Set the dial to 20s.
Place the stop ring at the right side of stopper.
(2) Longer time value setting

Set the dial to 30s.
Place the stop ring at the left side of stopper.
 \section*{DATA
 \section*{DATA

 ■ Load control life}

 ■ Load control life}

3) Time setting [common]

To set the time, turn the set dial to a desired time within the range.
Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under "0" range. (Instantaneous output area) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.

CAUTIONS

1. Terminal connections
1) Refer to wiring diagram before terminal connections.
2) Use the screw terminal type for flush mounting.
For using 8 pin type, use the timer with screw terminal socket (AT8-RR) or 8 pin cap (AD8-RC).
For using 11 pin type, use the timer with 11 pin cap (AT8-DP11).
Do not solder directly the pin of the timer for connection.
3) The connection to power supply

100 to 240 V AC, 24 V AC type

Type	Pin	Screw terminal
PM4H-A PM4H-F11R	Connect the terminal (2)-(10) to the power source.	
PM4H-S PM4H-M PM4H-W PM4H-SD PM4H-F8 PM4H-F8R	Connect the terminal (2)-(7) to the power source.	Connect the terminal $z-x$ to the power source.
DC type		
Type	Pin	Screw terminal
PM4H-A PM4H-F11R	Connect the terminal (2) to negative (-), the terminal (10) to positive (+).	Connect the terminal x to negative (-), the terminal z to positive (+).
PM4H-S PM4H-M PM4H-W PM4H-F8 PM4H-F8R	Connect the terminal (2) to negative (-), the terminal (7) to positive (+).	

Prevent inductive or residual voltages generating between the power supply terminals after the power is off. (If the power supply cables are routed parallel to the high voltage or power cables, an inductive voltage will be generated between the power supply terminals.)
On the DC type, keep the voltage within the allowable operating voltage range with ripple rate of 20% or less. Apply the power supply voltage at once through the switch or relay contacts. If the voltage is gradually applied, the timer may time up or power supply reset may not operate regardless of setting time.
4) The control output load must be less than the rated load capacity of the relay contacts.

2. Input connections

1) If the circuits is connected as in Fig. A, the internal circuits must be broken. Be sure to connect the circuit as in Fig. B. Especially, for customer who has been used PM48A (Conventional type), be sure to check if the new circuit for PM4H timer is corrected as in Fig. B.

2) Since the PM4H timers use a transformerless power supply system, the input equipment must use the power supply transformer in which the secondary side is not grounded with the primary and secondary sides insulated, in order to prevent interference of the power supply circuit when connecting the external input circuit.
Be sure not to use an autotransformer.
3) Be sure not to use terminal (10) as the common terminal of the operation signal as shown in Fig. A. Otherwise, the internal circuit of the timer may be damaged. Use terminal (2) as the common terminal as shown in Fig. B.

4) When one input signal is simultaneously applied to more than one timer, be sure to avoid the wiring shown in Fig. C. Otherwise, the short-circuit current will flow and cause damage. Be sure to align the polarity of the power supply as shown in Fig. D.

5) Terminal (2)-(6) (screw terminal (2)-(3) should be connected as the operation signal input. Connect terminals (2)-7) (screw terminal (2)-4) for reset signal input. Connect terminals (2)-(5) (screw terminal (2)-5)) for stop signal input. Be sure not to connect with other terminals and apply excessive voltage. The internal circuit will be damaged.
6) The input wiring other than the power supply circuit should avoid these conditions, high-voltage wiring and parallel wiring with power wire. Wire in short with using the sealed-wire or metal wiring tube.
7) For operation signal, reset and stop input, use gold-plated contact with high reliability. Since contact bouncing causes errors in the operation, use an input contact less bounce time.
8) Keep the minimum signal input time over 0.05 s.

3. Input signal conditions

1) Connections of contact input

Use gold-plated contacts with high-reliability. The bounce time at the contacts causes errors in the timer operation time. Accordingly, use signal input contact whose bounce time is short. The resistance when shorted should be less than $1 \mathrm{k} \Omega$, and when open resistance should be more than $100 \mathrm{k} \Omega$.
2) Connections of non-contact input (open-collector)

Apply the open-collector connection. The characteristics of the transistor used must be $\mathrm{V}_{\text {ceo }}=10 \mathrm{~V}$ or more, $\mathrm{I}_{\mathrm{c}}=10 \mathrm{~mA}$ or more, and $\mathrm{I}_{\text {сво }}=6 \mu \mathrm{~A}$ or less. Additionally, the input impedance must be $1 \mathrm{k} \Omega$ or less, and the residual voltage must be 0.6 V or less.
3) Voltage input

Even if the open collector is not used, input is also possible from the non-contact circuit of 6 to 30V DC. In this case, the signal input is turned on when the signal is turned from H to L .
The residual voltage must be 0.6 V or less when Q is on. On the AC type, an insulated transformer is required as the power supply for the photoelectric sensor, etc. (power supply for the input devices).
Note: Keep the minimum input signal time of each signal to 0.05 s or more.

4. Power off time

Keep 0.1s (-A, -S, -M type), 0.5s (-SD/ SDM type), 0.3s (-W type) or more for the power off time after time cycle is completed.

5. Cautions [Common]

1. Prevent using the timer in such places where flammable or corrosive gas is generated, a lot of dust exists, oil is splashed or considerable shock and vibration occur.
2. Since the main body cover is made of polycarbonate resin, prevent contact with organic solvents such as methyl alcohol, benzine and thinner, or strong alkali materials such as ammonia and caustic soda.
3. External surge protection may be required if the following values are exceeded. Otherwise, the internal circuit will be damaged.

Operation voltage	Surge voltage
100 to 240 V AC	
100 to 120 V AC	$4,000 \mathrm{~V}$
200 to 240 V AC	
48 to 125 V DC	
12 V DC, 24 V DC	
24 V AC	500 V
24 V AC/DC	

Surge wave form $[\pm(1.2 \times 50) \mu$ s single polarity full wave voltage]

4. For connecting and disconnecting operating voltage to the timer, a circuit should be used to prevent the flow of leakage current. For example, a circuit for contact protection as shown in Fig. A will permit leakage current to flow through R and C , causing erroneous operation of the timer. Instead, the circuit shown in Fig. B should be used.

5. In order to maintain the characteristics of the timer, long continuous current flow through the timer, causing generation of heat internally should be avoided because of the degradation it can cause. For such long continuous operation, the circuit shown below should be used.

[^0]: Note: 0 setting is for instantaneous output operation.

[^1]: Note: Keep 0.1 s or more for power off time. PM4H-M timers do not have each input which is signal, reset and stop

[^2]: *Notes: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature.
 2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$. When the power goes on, in rush current (0.3 A) flows. Cautions should be taken. The minimum power supplying time after forced reset input is 2 s or more.
 3) Between contacts of different pools for F8, F11R types only.

